PFM-Revision of the Second Generation
Content

Implants – Concept – Instrumentation 3
The Implants, Characteristical Description 4
The Press-Fit Concept 6
The Instrumentation 8

Preoperative Planning 11
Radiological Analysis of the Femur 12
Determining a Surgical Strategy 17
Making a Preoperative Template 20

Surgical Technique 22
Rational Use of the Implants 23
Preparing a Bone-Implant Contact Surface 24
Ensuring Effective Implant Fixation 26
Option 1: Femoral Flap 28
Option 2: Endofemoral Approach 34

Postoperative Treatment 41

Case Studies (Femoral Flap) 42
Case Studies (Endofemoral Route) 43

Conclusions 44

Appendix 1
Assembly of the Two Implant Components 47
Assembly of the Stem in One Stage (Extrafemoral) 48
Assembly of the Stem in Two Stages (Intrafemoral) 49

Appendix 2
Removal of a Revitan Straight Stem 50
Removal of the Proximal Component 52

Implants 54

Basic Instruments 55

Instruments Proximal 58

Instruments Distal Straight 59
Implants – Concept – Instrumentation

Foreword

- This document discusses straight, uncemented stems, whose primary stability is achieved exclusively by means of press-fit anchorage. This type of prosthetic implant has been used since 1994 and is called Revitan Straight Stem or was called PFM-Revision (“Prothèse Fémorale Modulable pour Révision” or “Press-Fit Modular Revision Prosthesis”). They have to be differentiated from the other implants that come under the general name of Revitan, and are characterized as curved stems that are essentially not used in the same way as a straight stem.

- Every surgeon must inform himself and be able to ask the designing surgeons of an implant the relevant questions in order to be able to make a good choice. He must be fully aware that each design has its special requirements and advantages and disadvantages. Thus, each implant is also a compromise.

Because modularity as such is not a concept that necessarily guarantees primary stability, we believe that a straight stem in comparison with a curved stem is essentially different. It is important to be aware of these differences in order to avoid serious mistakes when choosing a strategy for implantation.

Important

The components and instruments of the Revitan Straight system (PFM-Revision of the second generation) cannot be combined with the components and instruments of the first-generation PFM-Revision system.
Implants – Concept – Instrumentation
The Implants, Characteristical Description

The *Revitan* Straight (PFM-R) consists of a set of femoral stems made of Ti6Al7Nb titanium alloy *(Protasul®-100)*. Each femoral stem is made up of 2 parts: one proximal component and one distal component. Mechanical coupling is ensured by a Morse taper connection.

Proximal components
There are 2 types of proximal components: spout or cylindrical. The spout components are wider on the frontal plane whilst the medial profile of the cylindrical components is thicker. Components of 6 different heights are available for each type, in increasing size by steps of 10 mm, from 55 mm to 105 mm. The CCD angle is 135° and the offset is 44 mm. The lateral side with ribs and grooves is hollow, i.e. featuring the female part of the Morse taper connection. There are two holes in the medial part that can be used for nonmetallic suture to reinsert a flap.

Distal components
The distal component is available in three different lengths: 140, 200 and 260 mm. The diameter increases by steps of 2 mm from 14 to 24 mm. The whole range includes a total of 16 components. They are straight stems with 8 longitudinal ribs and, from the size of diameter 18 mm, each stem has a flattened anterior-posterior area, with increasing size as the diameter increases. The shape of these implants is conical, with a taper of 2°. The height of the conical area is 100 mm for the 140 mm stems, whereas it is 120 mm for the 200 and 260 mm stems.

In addition to this range, a 120 mm stem (diameter 14 mm) is also available. This corresponds to a 140 mm stem that has been shortened by 20 mm. The working area of this implant is the conical proximal area, which is 45 mm high with a taper of 9° and lateral ribs.

The top of female Morse taper is threaded for the impactor and the disassembly instruments for the proximal component. The offset of 44 mm is a compromise that on one hand ensures a good function of the glutei muscles and on the other hand avoids excessive stress on the coupling area, which is, by definition, weaker.

The conical part of the implant is always in a distal position. The greater the slope of the conical part, the shorter the conical part will be and the weaker the distal part of the implant. The slant of 2° of the conical part means that this part is sufficiently high without excessive weakening of the stem, even for those with the smallest diameters (14 and 16 mm).

The fins are also conical in shape, which seems to us to be preferable to a vertically grooved design, which would be less effective, or to blade-shaped fins, which would be weaker.
The assembly system
The two parts of the prosthesis are coupled together by means of an original and efficient Morse taper system perfected in 1989 and used since then successfully in clinical application. The Morse taper has 4 areas:

1. Thread for the conical nut.
2. Cylindrical area for the centering of the 2 components.
3. Conical area for mechanical coupling.
4. Area of a narrower cross section, allowing concentration of stresses at this level.

Before the assembly: It is possible to adjust the antetorsion of the proximal component from $+40^\circ$ to -40°.

After the assembly: A gap of about 1 mm between the 2 components enables micromovements without inducing the formation of any metal debris.

Sizes – Possible combinations

The entire set of components making up the Revitan Straight system (PFM-R) are modular.
Implants – Concept – Instrumentation

The Press-Fit Concept

The press-fit concept is an assembly process consisting of the fitting of 2 separate parts, used frequently in industry (Morse taper systems). It is also a good technique to ensure the primary stability of a femoral revision stem in the bone. This was the technique selected by Wagner in 1987. The prerequisites to ensure the press-fit surgically were very well defined by Morscher: First of all, achieve a contact surface between the bone and the implant, then ensure that the prosthesis is perfectly wedged into place, and lastly, avoid excessive stiffening of the femur. To achieve these three objectives, a press-fit stem requires very specific geometrical characteristics. It should be stressed here that, while the modular concept does not, as such, ensure the primary stability of an implant, it is a good means for obtaining an effective press-fit.

Bone-implant contact surface

- A straight stem is the most certain way to achieve a large enough surface contact between bone and implant because this concerns an invariable configuration, whereas there can be a multiplicity of curved shapes. It is also easier to achieve a straight femur than to provide a stem with a curvature exactly corresponding to that of the femur in the sagittal plane.
- In order to achieve this aim with a straight stem, a three-point support must be avoided. This means that in the case of a straight femur in the frontal plane, implantation in the varus position is to be avoided, and in the case of a curved femur, a femoral osteotomy is necessary.

Ensuring that the implant is firmly wedged into place

This means ensuring the primary stability of the implant by creating a higher stress (or prestress) at the height of the bone-implant interface than the destabilizing forces consisting of axial and rotational stresses.

A conical stem features the best design to ensure a secure wedging: progressive transformation of the vertical shear stress into stabilizing horizontal stress, with a more even distribution of the forces and the possibility of rewedging.

NB. A stem with ribs facilitates wedging (easier impaction) and ensures perfect neutralization of the rotational stresses, which is essential for an uncemented stem.

In order to be wedged into place, a cylindrical stem would have to be slightly oversized with respect to the medullary canal; this entails several drawbacks, like difficulties during placement (stress peaks), risk of fracture if the cortical bone is fragile, unensure rewedging if the initial wedging was not perfectly successful.

The cross section of a press-fit stem also has to be carefully considered, since control of rotational stresses depends to a great extent on this cross section. We believe that a finned stem has a definitive advantage in this respect, whereas a circular cross-sectioned stem with a generally quite smooth surface doesn’t provide a high resistance to the rotational stresses.
Avoid excessive stiffening of the femur in order to lower the risk of stress-shielding. To achieve this, it is necessary to comply with 3 rules:

- **Try to achieve proximal fixation of the implant** whenever it is possible. If the femur is straight on the frontal plane, fixation in the metaphyseal-diaphyseal region is frequently possible.
- **Limit the height of the bone-implant contact area** when diaphyseal fixation only is possible. The primary stability of a press-fit stem can be achieved over a distance of 40 to 50 mm.
- **Avoid filling the medullary canal too much** in order to conserve transmission of the stresses (traction and compression). Therefore, optimize bone-implant contact in the vicinity of the neutral zone of the femur.

The neutral zone is located at the intersection of the traction and compression areas. It is on a sagittal plane in the proximal area of the femur and on a frontal plane in the diaphyseal region.

To achieve the aims indicated opposite, a press-fit stem must fulfill some very specific requirements: the metaphyseal part must have a wide profile or a steep conical slant in order to optimize contact between the bone-implant in the sagittal plane. In the diaphyseal region it is necessary to avoid circular contact (in particular on the sagittal plane) so as to ensure bone-implant contact in the frontal plane. Under these conditions, the ribs must be placed on this plane only.

Conclusions

The press-fit concept, which is often mentioned for securing the primary stability of uncemented implants, requires that the above described points are followed consequently in order to achieve the desired results.

When selecting the press-fit concept, it is necessary to choose an implant having well defined features with the only objective to meet the requirements that this method of fixation requires. We believe that a ribbed straight stem with a conical shape is a good choice.

More generally speaking, if a cementless stem is selected for a revision surgery, the design of the implant should always be considered with care. The consequent application of the press-fit concept offers the possibility to choose and use a stem as short as possible and avoiding thereby punctual anchorage over a long distance.
Implants – Concept – Instrumentation
The Instrumentation

The instrumentation consists of a set of reamers, a system of rasps and modular test prostheses, and a proximal trial part enabling the definitive prosthesis to be implanted in 2 stages. Although the rasps and test prostheses are combined in a single instrument, it is suggested to consider it as two distinct instruments, as its function varies depending on the option chosen by the surgeon.

NB. For the reamers refer to Surgical Technique: Preparing a bone-implant contact surface.

Modular rasps
• The rasp function is only used if the endofemoral approach is selected, with fixation in the metaphyseal-diaphyseal area. In this situation, the rasp also is used as a test prosthesis.
• The rasp involves the whole range of proximal components (spout and cylindrical).
For the distal components, the rasp is limited only to the component of length 120 mm and to the 140 mm long components in the diameters 14 to 18 mm.

NB. The use of an implant with a diameter of 20 mm or larger (L 140 mm) means that only diaphyseal fixation can be achieved. In that case the preparation of the femur is done with a reamer whose diameter is superior to the size of the proximal components, making the rasp ineffective.

A modular rasp enables a two-stage preparation of the femur. For this purpose, the surgeon disposes of a rasp adaptor used to drive in the distal rasp and to choose in a second step the size of the proximal rasp (graduated from 55 to 105 mm).
Refer to Surgical Technique: Preparing a bone-implant contact surface.

Although the rasp does include the 200 and 260 mm distal components, we believe that it is of lesser use for these implants. Indeed, when proximal fixation is sought, these implants are too long and they should not be used in that case.

NB. The use of a long stem is recommended only when a femoral flap is performed.
Modular test prostheses

When fixation of the implant is achieved in the diaphyseal region, the femur is prepared with the reamers. In this case, the rasp is no longer necessary, and only the test prosthesis function is of use.

Primary stability is ensured with the smooth conical area of one of the distal components, 140, 200, or 260 mm (the conical area is demarcated by 2 transversal lines). The proximal components serve to adjust the length of the lower limb.

NB. The 140 mm distal components can be used both as rasps and as test prostheses.

Proximal trial part

These instruments enable the definitive stem to be implanted in two stages. There is a proximal trial part corresponding to each definitive proximal component. It is assembled to the distal component by means of a nut screwed to the threaded part of the Morse taper without any contact with the Morse taper. It is possible to adjust its antetorsion by ±30°.

When press-fit is selected in order to ensure primary stability, the role of a test prosthesis is essential. Having a modular test prosthesis enables stability to be ensured by the conical area of the implant. Refer to the surgical technique ensuring that the implant is wedged into place.

See Surgical Technique: Ensuring effective implant fixation.

This instrument set can only be used when a femoral flap has been completed. In this case, it is essential to ensure that the distal component of the definitive prosthesis wedges perfectly into place.

Summary

The choice of a modular implant implies a modular instrument set, and each definitive implant size must correspond to a test prosthesis.
A revision surgery is prepared in three stages: radiological analysis of the femur, determining a surgical strategy, and making a preoperative template.

Radiological analysis of the femur
In order to carry out a thorough and complete radiological analysis of the femur, it is necessary to dispose of high-quality X-ray images: An anterior-posterior view of the hip (centered on the loosened prosthesis), an anterior-posterior view of the pelvis, and anterior-posterior and lateral X-ray images of the femur extending up to 15 cm below the distal end of the loosened stem are required. These four X-rays are the minimum requirements for defining a surgical strategy with some degree of rigor.

NB. It is necessary to differentiate between X-ray images aiming to choose a surgical strategy and those aiming at the evaluation of the long-term clinical results. This distinction has to be made as long as the important criteria to ensure a safe surgery do not influence the evaluation of the results (deviations of the femur or difficulties in removing the cement).

Determining a surgical strategy
Determining a surgical strategy means selecting an approach to the femur to overcome the eventual obstacles observed during the examination of the X-rays. This choice determines the area where primary stabilization (the bone-implant contact) will occur.

NB. Each concept has its own imperatives. A good knowledge of the objectives to be achieved in order to ensure primary stability is essential for defining a rational and logical surgical strategy.

Making a preoperative template
Highlight the main obstacles found while analyzing the X-rays of the femur and finally define the strategy. The template also enables to measure the major references that can be used during surgery (length of the flap).

Preoperative Planning

Radiological Analysis of the Femur 12
Determining a Surgical Strategy 17
Making a Preoperative Template 20
Preoperative Planning
Radiological Analysis of the Femur

The radiological analysis of the femur must be completed with regard to the imperatives imposed by the press-fit concept. Therefore, it must not be limited to an analysis of the defects and of the cement only but extended to the consideration of the degree of osteoporosis and the thorough analysis of the morphotype.

Degree of osteoporosis
Evaluate the thickness of the cortical bone and the geometry of the medullary canal: conical or cylindrical. Carry out this evaluation along an area of the femur without implant on an anterior-posterior X-ray, showing the femur over a sufficient length.

To differentiate between intermediate stages 2 and 3, give priority to the geometry of the medullary canal. If it is cylindrical, it should be classified as stage 3 even if the bone cortex is not particularly thin. The term conical medullary canal can refer to a medullary canal that can be prepared into a conical shape while using the conical reamers (thick cortex); similarly, a cylindrical medullary canal can refer to a medullary canal where it is difficult to prepare in a conical shape with the reamers (thin cortex).
Defects
Evaluate all lesions resulting in a fragile cortical bone in the area of the femur with the implant (granulomas, stress-shielding or osteoporosis, mechanical wear). Evaluate the lesions on the basis of their sizes (Gruen’s areas).

NB. The following examples refer only to lesions caused by granulomas.

For stage 2, include lesions affecting one area of the metaphysis (1 or 7) and one area of the diaphysis (prosthesis tilted in a varus angle). For stage 3, include isolated granulomas in area 4 or, if they are aggressive, at a distance. For stage 4, include fractures around the stem regardless of the condition of the cortex elsewhere. Defects due to stress-shielding or areas weakened by osteoporosis usually affect the cortical bone on both sides and in most cases are therefore classified as stage 4.
Morphotypes

Evaluate the presence or not of a curvature in the frontal plane and the extent of the curvature in the sagittal plane. This verification is very important if a straight stem and the press-fit concept have been selected. An anterior-posterior X-ray and a lateral-view X-ray will be required, showing the femur up to about 15 cm below the distal end of the loosened implant. The templates of a long stem must be used.

1 – Femur straight in the frontal plane

Slight curvature in the sagittal plane.

2 – Femur curved in the frontal or sagittal plane

Curvature in the frontal plane, regardless of its extent.

Sagittal: pronounced curvature (overall) and straight in the frontal plane.

Varus deviations in the frontal plane are frequent and it is always wise to consider a curvature of the femur in the frontal plane, even if it is only slight. In the sagittal plane, the femur is rarely straight and a slight curvature or a double sagittal curvature (diaphyseal curvature with posterior concavity compensated by a proximal curvature with anterior concavity) need not be taken into account since this is usually not an obstacle to place a straight stem.

NB. Overall curvature means a diaphyseal curvature with marked posterior concavity not compensated by a proximal curvature with anterior concavity.
Cement
It is suggested to analyze the cement mantel entirely. The evaluation of the difficulties to remove the cement should not be limited to the presence or not of a distal cement plug, but also evaluate the thickness of the cement, considering the quality of the cortical bone on both sides.

If the cement is thick and well adhering to fragile cortical bone on both sides, the risk of a via falsa is significant. The same applies if the distal end of the stem is off axis frontally or sagittally.

Conclusions
A preoperative X-ray planning as described here has the purpose of defining a surgical strategy aimed at avoiding any worsening of the bone lesions and at enabling to get to the objectives imposed by the press-fit concept so as:

• to achieve bone-implant contact as a surface, which means that it is necessary to evaluate the extent of the defects and the presence of any curvature of the femur to avoid a three-point contact of the implant;
• to ensure that the prosthesis is wedged perfectly into place, which depends mostly on the surgical technique but implies also a good evaluation of the geometry of the medullary canal;
• to avoid stiffening the femur. This objective depends on the design of the implant but also on the possibility to achieve proximal or short diaphyseal fixation, which depends on the morphotype, on the extent of the defects, on the quality of the cortical bone, and on the appearance of the medullary canal.

1 – No difficulties
No plug or, if any, < 4 cm and good cortex.

2 – Presence of difficulties
Plug > 4 cm even if the cortical bone is good or thick cement or plug < 4 cm with fragile cortex+.

If the cement is thick and well adhering to fragile cortical bone on both sides, the risk of a via falsa is significant. The same applies if the distal end of the stem is off axis frontally or sagittally.
Preoperative Planning
Determining a Surgical Strategy

Determining a surgical strategy consists in an initial choice of an approach to the femur to overcome the various obstacles identified during the radiological analysis, without ignoring the objectives imposed by the press-fit concept. The area of the femur where primary stability of the implant will be achieved depends on this choice.

Femoral approach(es)
It is possible to opt either for the endofemoral approach or a femoral flap. This choice will depend on the quality of the cortical bone and, above all, on the presence or not of a curvature of the femur, knowing that varus deviations are frequent in the case of implant loosening.

NB. The difficulties to remove the cement influence that choice only when discussing which of the two approaches to the femur should be chosen. Reminder: For the cortical bone, take granulomas into account but also the presence or not of stress-shielding or osteoporosis.

Fixation area(s)
(bone-implant contact)
• If an endofemoral route has been chosen, fixation in the metaphyseal-diaphyseal area or in the proximal diaphyseal area will be targeted.
• If a femoral flap is carried out, fixation can only be diaphyseal, in the isthmus of the femur. Fixation may be a short or long diaphyseal fixation (bone-implant contact over a height of 4 to 5 cm or 5 to 8 cm respectively).

NB. The choice of the height of the bone-implant contact will depend on the geometry of the medullary canal; that is most frequently on the degree of osteoporosis (conical or cylindrical medullary canal). Short fixation should be selected whenever this is possible.

The various options
The combination of the four parameters used for the radiological analysis, together with their binary classification (curvature of the femur and difficulty of removing the cement) or their classification in four stages (bone defect and degree of osteoporosis), results in the identification of 6 main strategic options:

Option 1 (endofemoral approach and proximal fixation) and options 3 and 5 (femoral flap and diaphyseal fixation) are the fundamental options.

Options 2 and 4 are intermediate options, in which the choice between the endofemoral approach and a flap is open to discussion.

Option 6 is a special option and is only indicated for a small amount of patients. However, it is worthwhile to highlight it separately, as far as in this case the choice of a press-fit stem may be contraindicated.
Morpho-type

<table>
<thead>
<tr>
<th>Degree of osteoporosis</th>
<th>Defects</th>
<th>Cement</th>
</tr>
</thead>
</table>

Option 1. Propitious situation: femur straight in the frontal plane and slightly curved in the sagittal plane. Absence of any bone defects or localized onto zone(s) 1 and/or 7 (no defects onto zone[s] 2 and/or 6). The only obstacle could be the possible difficulties in removing the cement: plug or thick layers adhering to fragile cortex (osteoporosis stage 3).

Option 2. Intermediate option characterized by a femur straight in the frontal plane with defects onto zone(s) 2 and/or 6, often combined with defects onto zone(s) 1 and/or 7, but no lesion onto zone 3 or 5. In that case, evaluate on one hand the difficulties in removing cement and on the other hand the extent of the defects onto zone(s) 2 and/or 6.

Option 3. This situation is characterized by defects leading to a weakening of one or both cortices with in any case lesions of the cortex onto zone(s) 3 and/or 5. It is often a granuloma but also can be a stress-shielding or something similar (cemented prosthesis and osteoporotic femur) or seldom a mechanical wear (abrasion of the cortex due to an abnormal mobility of the couple prosthesis/cement).

Option 4. Intermediate option which applies only to slight curvatures in the frontal plane. In that case, evaluate the difficulties in removing the cement: plug or thick layers adhering to fragile cortex (osteoporosis stage 3). If the curvature in the frontal plane is pronounced, carry out a femoral flap in any situation.

Option 5. This situation is characterized by a curvature of the femur in both planes, frontal and sagittal, always combined with an other obstacle which is in the best case a defect stage 2 only, but it can be also an osteoporosis stage 3 and/or difficulties in removing the cement.

NB. A curvature in the frontal plane has always to be considered, whatever its extent is. In the sagittal plane, only pronounced curvatures have to be considered (overall curvature) with a femur straight in the frontal plane.

Option 6. Particular situation characterized by an advanced osteoporosis (stage 4) with very thin cortex and large cylindrical medullary canal. In that case, the placement of a press-fit stem should be discussed thoroughly as risks associated with stress-shielding are high if a long, large diameter implant is placed.
The fixation mode depends on the extent of the defects if no difficulties in removing the cement are present:

- Endofemoral approach.

2 Possible choices according to the presence or not of difficulties in removing the cement:
- Endofemoral approach. The fixation mode depends on the extent of the defects if no difficulties in removing the cement are present: proximal fixation if the defects are of lesser importance onto zone(s) 2 and/ or 6 (give advantage to that option in case of osteoporosis++) or diaphyseal fixation if major defects onto zone(s) 2 and/or 6 (possible option if no osteoporosis). Refer to option 1.
- Femoral flap. With difficulties in removing the cement select always a diaphyseal fixation according to the modalities varying as a function of the stage of osteoporosis. Refer to option 3.

Femoral flap, in any case to avoid an aggravation of the bone lesions and to remove the cement. It is a semicircular lateral flap; generally it is not necessary to combine it with a osteotomy of the medial cortex as the femur is straight in the frontal plane and slightly curved in the sagittal plane.

A femoral flap is necessarily associated with a diaphyseal fixation:

- Short fixation, with a bone-implant contact of 4 to 5 cm if the cortex is good and the medullary canal more or less conical. In that case, use a 140 mm distal component generally combined with a cylindrical proximal component, particularly if the height is > 7.5 cm or the femur is narrow.
- Long fixation, with a bone-implant contact of 5 to 8 cm if the medullary canal is cylindrical or according to the morphotype (tall patient). In that case use a 200 mm distal component generally combined with a cylindrical proximal component (it is very seldom to use a 260 mm distal component).

NB. Presence of a cement plug and if a proximal fixation is considered (osteoporose): An endofemoral approach with a femoral window can be chosen. In that case, a trochanterotomy can also be an alternative to the femoral flap.

Femoral flap in any case, as at least 2 obstacles are combined for the placement of a straight press-fit stem and one has to consider a curvature in the frontal plane, even the slightest one. Carrying out a flap avoids a varus placement with a three-point contact in the frontal plane (which is always an issue with straight stems) and eases removing the cement if the cortex is fragile++ due to granulomas or osteoporosis.

In that situation combine the lateral flap with an ostotomy of the medial cortex, either to improve the bone-implant contact (if strong varus), or to avoid a three-point contact in the sagittal plane (if pronounced curvature in the sagittal plane), particularly with long stems.

NB. in the case of a curvature in the sagittal plane (pronounced sagittal curvature) carry out first the lateral flap and if necessary proceed with the osteotomy of the medial cortex keeping in mind that this osteotomy is not always necessary using a short stem.

A femoral flap is necessarily associated with a diaphyseal fixation:

- Short fixation, with a bone-implant contact of 4 to 5 cm if the cortex is good and the medullary canal more or less conical. In that case, use a 140 mm distal component generally combined with a cylindrical proximal component, particularly if the height is > 7.5 cm or the femur is narrow.
- Long fixation, with a bone-implant contact of 5 to 8 cm if the medullary canal is cylindrical or according to the morphotype (tall patient). In that case use a 200 mm distal component generally combined with a cylindrical proximal component (it is very seldom to use a 260 mm distal component).

The exeter and double mantels, described by M. Kerboul, MD, are both possible options. In certain cases, one may place a press-fit stem but aim in any case to a proximal fixation and avoid diaphyseal fixation. The femoral access route has to be an endofemoral approach or a trochanterotomy and add bone in the medullary canal.
When a flap is indicated, the template may be prepared in the following 5 successive steps:

1. Tracing the contours of the femur
 Trace the contours of the femur, highlighting the zones of defects, the distal end of the loosened implant and the cement plug, if any. Mark the center of rotation of the loosened prosthesis.

2. Trace the axes of the femur
 Medullary axis: Carefully center the template of a long stem (200 or 260 mm long distal component) in the diaphyseal region, trace the centromedullary axis and estimate its position at the level of the proximal femur, at the height of the lesser trochanter and in relation to the tip of the greater trochanter.
 Axis of the center of rotation: Trace a line perpendicular to the centromedullary axis at the height of the summit of the greater trochanter. In principle, the center of articular rotation of the revision implant should lie on that axis.

3. Determine the length of the flap
 Position a template on the centromedullary axis, so that the summit of the greater trochanter coincides with the center of rotation of the revision stem (choose a medium-sized proximal component).
 Determine the length of the flap which has to overcome the obstacles (femoral curvature) and respect the isthmus of the femur at the same time. Trace the distal end of the flap.

The template should be made on an anterior-posterior X-ray showing the femur over a sufficient length to avoid any off-axis errors (about 15 to 20 cm below the distal tip of the loosened implant).

Reminder: If the femur is straight in the frontal plane, a curvature in the sagittal plane has to be considered only if it is pronounced.

This is an important step of the preparation of the template, since it enables to evaluate the extent of a curvature, if any. The curvature is often more apparent on the templates as on X-rays.

Reminder: Varus deviations of the femur are frequent in cases of implant loosening.

It is now possible to determine any length discrepancy to be corrected. However, it is only an indicative value, as far as during revision surgery, respecting the conventional references to determine the length of the lower limb (degree of subsidence of the prosthesis) is not an absolute rule.

The average length of the flap is 15 cm ± 2 cm and it should always respect the isthmus of the femur. Avoid making the flap too long with the only aim to remove an extensive cement plug. It is possible to make a shorter flap (10 to 12 cm) in the case of dysplastic femur or short patients.
4. Choose the implant length
This involves determining the height of the bone-implant contact area.
Whenever possible, a short distal component (140 mm) should be selected, preferably with a bone-implant contact over a length of 40 to 50 mm.
Trace the contours of the proximal component (in particular the shoulder of the implant and the center of rotation) as well as the distal end of the possible distal component.

5. Verify the length of the flap and the depth of penetration of the implant
Determining the length of the flap requires to measure the distance between the summit of the greater trochanter and the distal end of the flap.
The depth of penetration of the stem is calculated, starting from the distal end of the flap, considering the shoulder of the implant in situ as reference.
Since the distance between the center of rotation and the shoulder of the implant in situ is about 20 mm and the length of the flap is known, it is possible to determine whether the implant is in the correct position or not. The distance between the shoulder of the revision stem and the distal end of the flap must be equal to the length of the flap – 20 mm.

NB. The distance between the center of rotation and the shoulder of the implant is only 10 mm in the proximal component of height 55 mm.

Generally, it is possible to determine the length of the distal component. However, the other references provided by the template (height of the proximal component and diameter of the distal component) are indicative only, and very often the choices made intraoperatively differ from the selected component during the preoperative planning.

This is a particularly important reference point to consider, because during surgery, with the reclined flap, the summit of the greater trochanter can no longer be used as reference to evaluate the depth of penetration of the implant. Only the distal end of the flap can serve as reference to evaluate the position of the revision stem.

The depth of penetration calculated on the basis of the template is indicative only, and the final choice is always made during surgery after completing several trial reductions.

NB. When there is significant shortening, it is often preferable to avoid restoring exact leg length of the two lower limbs.

Conclusions
Making a template is simple if the necessary documentation is available, in particular an X-ray on the frontal plane with sufficient length of the femur. Very often it enables identification of a slight frontal curvature that might otherwise easily remain unnoticed until the centromedullary axis has been traced. Lastly, the length of the flap is the only dimension that the surgeon must always keep in mind during surgery, and the final size of the implant is always determined intraoperatively.
General considerations

- Prudence and perseverance are essential while gaining experience. Any surgeon using a new implant will inevitably require a learning phase, regardless of the prosthesis that is selected. This is a good reason not to change the concept too often.

- Any concept implies its own specific surgical technique. The surgeon must familiarize himself with the imperatives of a concept before putting it into practice.

- A technical error often results in immediate failure. When the use of a cementless implant has been decided, the surgical technique has to be followed rigorously.

- The 2 main aims to be achieved are sparing the existing bone stock and ensuring perfect primary stability of the implant. Sparing the existing bone stock depends, first and foremost, on the choice of the approach to the femur, and we feel that it is never good to change strategy during the course of the surgery.

To ensure primary stability through the press-fit concept, it is always advisable to comply with the principles defined by Morscher, that is, to obtain bone-implant contact as a surface and to ensure that the prosthesis is wedged firmly into place without making the femur too stiff.

The surgical technique will vary depending on the selected approach to the femur: a femoral flap (option 1) or the endofemoral approach (option 2). Before describing these two techniques, however, a few general comments should be made. These considerations are: rational use of the various implants and practical application of the press-fit concept, or how to prepare a bone-implant contact surface and ensure that the prosthesis is wedged properly into place.

NB. The two surgical techniques are presented in such a way that they can be used separately, which explains certain repetitions.
Surgical Technique

Rational Use of the Implants

As a general rule, avoid combining high proximal components (95 or 105 mm) with short distal components (length 120 or 140 mm). When a high proximal component is required, it is preferable to choose a “cylindrical” component. The 260 mm distal component is very rarely used.

<table>
<thead>
<tr>
<th>Length of the distal component</th>
<th>Height of proximal component</th>
<th>Total length</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 175 mm</td>
<td>Endofemoral approach and fixation in the metaphyseal-diaphyseal region</td>
<td></td>
</tr>
<tr>
<td>65 185 mm</td>
<td>In this case, the “working” part of the distal component is the proximal conical area (height 45 mm). Choose a proximal component, which will usually be of the “spout” type, although it is also possible to use a "cylindrical" component.</td>
<td></td>
</tr>
<tr>
<td>75 195 mm</td>
<td>It is frequently preferable to choose a 140 mm distal component with a shorter proximal component.</td>
<td></td>
</tr>
<tr>
<td>85 205 mm</td>
<td></td>
<td>175 mm</td>
</tr>
<tr>
<td>95 215 mm</td>
<td></td>
<td>185 mm</td>
</tr>
<tr>
<td>105 225 mm</td>
<td></td>
<td>195 mm</td>
</tr>
</tbody>
</table>

140 mm		
55 195 mm	Short diaphyseal fixation by the endofemoral approach or after a femoral flap	
65 205 mm	In this case, the “working” part of the distal component is the distal conical area (height 100 mm). Choose a "spout" or “cylindrical” proximal component. This implant can also be used for a proximal fixation through an endofemoral approach, in particular when a femoral window must be bridged.	
75 215 mm		205 mm
85 225 mm		215 mm
95 235 mm		225 mm
105 245 mm	Avoid, if possible, and prefer a 200 mm distal component.	

200 mm		
55 255 mm	Long diaphyseal fixation with femoral flap	
65 265 mm	In this case, the “working” part of the distal component is the conical area (120 mm high), remembering that the 200 mm components always have an intermediate cylindrical area that is not adapted for wedging. If a high component is necessary, chose a proximal component of the “cylindrical” type.	
75 275 mm		265 mm
85 285 mm		275 mm
95 295 mm		285 mm
105 305 mm		295 mm

Reminder: The 260 mm distal components are used very rarely, and mostly for treating complications with multiple bone lesions. In these cases, they are used as a medullary nail.
Surgical Technique
Preparation of a Bone-Implant Contact Surface

To obtain a bone-implant contact as a surface is the major objective to achieve when the choice of a press-fit concept was made to ensure the primary stability of an uncemented implant. This preparation performed with reamers or rasps depends on the area of the femur where the primary stability will take place.

Preparation of the femur with the reamers
If diaphyseal fixation is required, the femur is prepared with the reamers, which have the role of giving the medullary canal a conical shape. To obtain bone-implant contact as a surface with the reamers, three rules have to be complied with:

Stay close to the fixation area
If the press-fit area can be in the proximal diaphyseal area, preparation through the endofemoral approach is possible.
If the press-fit area has to be in the isthmus of the femur, it is often preferable to carry out a femoral flap.

Ream a straight segment of the femur
The role of the reamers is to give the medullary canal a conical shape, and they are only effective if there is a certainty of working on a straight segment of the femur.

Ream a short segment of the femur
It is easier to make a segment of the femur “conical” if the height of this area is not too large.
Warning! The references provided by the reamer (diameter and length) are only indicative for the choice of the definitive implant, which must always be done with a test prosthesis.
Preparing the femur with the rasps
It is only possible to prepare a bone-implant contact surface with the rasps if an endofemoral approach is chosen and the primary stability area is situated in the metaphyseal-diaphyseal area of the femur (in revision procedures it is rarely possible to achieve fixation in the metaphyseal area). In this case, take advantage of the modularity of the rasp to perform a two-stage preparation of the medullary canal.

Preparation of the metaphyseal-diaphyseal area (bone-implant contact area)
• During the first phase, the zone of primary stability has to be “found” by using the distal part of the rasp. This is driven in with the aid of a rasp adapter that has length markings which can be used to select the length of the proximal component for use in the second phase.
• As a preference, a distal rasp with a length of 120 mm is used. But it is also possible to use distal rasps with a length of 140 mm: diameters 14 to 18 mm.

Preparation of the metaphyseal area (selection of the implant)
• Assemble the two components of the rasp: the distal part used in the first stage with the proximal part whose sizes have been determined in the previous stage.
• Impact the assembled rasp, and when its depth of penetration corresponds to the one achieved in the first stage, a perfect bone-implant contact in the metaphyseal-diaphyseal area is guaranteed.

In revision procedures, the position of the area of primary stability is always difficult to determine beforehand. A modular rasp enables a selective preparation of the bone-implant contact surface.

The distal parts with a length of 200 mm must not be used in this case.

For this stage of surgery, it is preferable to use proximal spout rasps, but the use of a cylindrical proximal rasp is also possible.

An assembled rasp can remain stuck in the higher metaphyseal area. In this case, there is no longer a surface contact but only local point contacts, which are often insufficient to guarantee the primary stability.
Surgical Technique
Ensuring Effective Implant Fixation

This is a delicate phase of the surgery. In addition to the necessity of an exact perception of the area where the implant will be wedged into place, it is necessary to comply with three rules in order to ensure good fixation.

Use the conical part of the implant
For stems of the same length the conical area is situated distally with a constant height. The height of the conical area is 120 mm for a 200 mm distal component and about 100 mm for a 140 mm distal component.

NB. It is important to emphasize that for the distal parts of length 140 mm and diameter 14 to 18 mm, the distal conical zone is lengthened by a proximal, also conical zone (9° taper). This means that these implants are conical over their entire length. This characteristic does not apply to stems with a length of 140 mm and a diameter of 20 mm and more, as the diameter of the distal conical zone is greater than that of the proximal conical zone.

Keep some conical anchorage area in reserve
Keeping some reserve of the conical anchorage area means ensuring that the implant is wedged into place (bone-implant contact) with the distal part of the conical area of the implant.

Why should part of the conical anchorage zone be kept in reserve?
If a stem of 200 mm length is chosen and if wedging is guaranteed through the proximal zone of the conical area, there is a risk of instability in case of even the slightest secondary subsidence, since this will occur in a cylindrical zone that is little suited to wedging. However, if some of the tapered anchorage zone is kept in reserve, then new wedging is possible, and, furthermore, the wedging will be of better quality.

How can some conical anchorage area be kept in reserve if this has not been achieved?
To keep some reserve of the conical anchorage area, it is necessary to increase the diameter of the implant without increasing the diameter of the medullary canal.

This feature, which is common to all conical stems, means that a long stem has always a cylindrical area that is not suitable for the wedging of the stem. Contrarily, short stems (diameter 14 to 18 mm) are conical over the whole length, which is a good reason to prefer this type of implant each time it is possible.

Reminder: For the stem of length 120 mm, only the proximal conical area of a height of about 45 mm will serve to wedge the implant into place.

The notion of a reserve of the conical anchorage area must be considered when the preparation of the femur is done with the reamers (diaphyseal fixation). It is difficult to know if there is a reserve of the conical anchorage area or not, if there is no precise knowledge of the area of the femur where the wedging takes place. This is a good reason for the realization of a femoral flap as soon as the fixation is intended to be in the isthmus of the femur.

If a monobloc stem has been selected, the consequence of this choice can be, however, a lengthening of the leg, and this might cause a difference in length between the 2 lower limbs. A modular system offers a real advantage to overcome that drawback.
Modularity and reserve of the conical anchorage zone
With a modular system it is easy to increase the diameter of an implant (keeping some reserve of the conical area) without inducing a difference in length of the 2 lower limbs. The surgeon has two options:

• If a short stem is selected (length 140 mm), increase its diameter and adjust the length of the lower limb using one of the proximal components with different height.

• If a longer stem is selected (length 200 mm), replace it in most cases with a stem of a larger diameter (+ 2 mm) and shorter in length (length 140 mm). These 2 implants have then a similar anchorage area, which lies distally for the short stem, thus providing some reserve of the conical anchorage area, and since the distal component is shorter, the equal length of both lower limbs is conserved or easily adjusted with one of the proximal components.

Completing an implant placement in two stages
The test prosthesis and the definitive implant do not always wedge into place at the same height! Implanting the prosthesis in two stages using a proximal trial part makes it possible to choose then the height of the proximal component after having placed the definitive distal component.

Summary
Good wedging ensures at the same time primary stability of the implant. Effective press-fit anchorage does not depend on the extent of the interface bone/implant but on the quality of the wedging. This stage of the operation is difficult to achieve if, when choosing the implant and implanting the final stem, there is no modular system available.
Surgical Technique
Option 1: Femoral Flap

During revision surgery, carrying out a femorotomy with a femoral flap is a good way to avoid incidents during the surgery and to ensure a perfect primary stability, which, in this case, is always in the diaphyseal region.

Main objectives
Both of the two articular approaches, anterolateral or posterolateral, may be completed. However, it is suggested to prefer the posterolateral access route if a lateral flap is planned.

In all cases, carry out a pedunculated femoral flap with the M. vastus lateralis, combined if necessary with an osteotomy of the medial cortex during the course or at the end of the surgery.

When selecting the prosthesis, take full advantage of the modularity of the test prosthesis and, whenever it is possible, place a short stem with a bone-implant contact over a height of 4 to 5 cm.

The definitive implant is placed in two stages. Assembly of the proximal component is carried out in situ, after having placed the definitive distal component.

Resecting the femoral flap
Cut a pedunculated femoral flap of an average length of 15 ± 2 cm. To preserve the isthmus of the femur where primary stability should be achieved, avoid to cut a too narrow flap in the diaphyseal area or a too long flap with the only objective to remove a cement plug. The femoral flap can be carried out in two different ways:

After having luxated the prosthesis and removed the implant. Carry out osteotomies of the cortical bone using the oscillating saw, from the lateral cortex towards the medial cortex, through the medullary canal, after having cut the distal end of the flap.

Prostheses not luxated and implant in place. The posterior and distal cuts of the osteotomy will be carried out with the oscillating saw and the anterior part with a bone chisel, guided underneath the M. vastus lateralis. Before making any attempt to lift the flap, it is necessary to free it from its attachment points: cement in the distal and proximal areas (greater trochanter), incomplete osteotomies (anterior or angled distal cut), adhesions at the level of the articular cavity (inner surface of the M. glutei).
Removing a cement plug
In a first step, drill a hole in the plug with the 6 mm drill bit, after making sure that the latter is correctly centered.

In a second step, after having verified that there is no via falsa, enlarge the opening to about 11 mm, so as to pass a wide cement extraction curette through it.

Calibrate the femur and verify the lateral axis
• In a first step, use the cylindrical reamers to eliminate any narrowing at the end of the prosthesis and calibrate the medullary canal.
• In a second step, verify whether the sagittal curvature (anterior cortical bone) is an obstacle preventing progress of the reamer along the axis of the diaphysis. To do this, use a long conical reamer with a diameter smaller than the inside diameter of the medullary canal.

Reaming the femur (making the medullary canal conical)
Increase the diameter of the reamers progressively and evaluate the depth of penetration by aligning the mark on the handle with the line passing from the summit of the greater trochanter to the center of rotation of the implant.

Example opposite: For a 15 cm long flap the summit of the greater trochanter will correspond to the mark 200–65. This reference corresponds to an implant of the same diameter as the reamer in place and 265 mm long, i.e. a 200 mm long distal component (the digit 200) coupled with a 65 mm high proximal component.

Before removing the cement, ensure a perfect exteriorization of the proximal femur, freeing it from its fibrous and capsular attachments.

Remove the cement plug after removing all the proximally and intermediately lying cement.

There is no necessity in attempting to increase the diameter of the medullary canal unless it is narrow (reaming to 12 or 13 mm is the minimum required).

If the anterior cortical bone is an obstacle, it is preferable at this stage of the surgery to carry out an osteotomy of the medial cortical bone, particularly if it is fragile.

To calculate the depth of penetration with the help of a sterile ruler, the summit of the greater trochanter is positioned at a distance corresponding to the length of the flap from the distal end of the flap.

Avoid being in a situation where a 260 mm distal component is necessary (tip of the greater trochanter in sector 3). In this case, increase the diameter of the reamers to end up within the sector 2, corresponding to a 200 mm distal component.

Remember that the references provided by the reamers are simply indicative for the determination of the definitive implant.
There is some reserve of the conical anchorage area
In this case, primary stability is ensured with the distal part of the conical area of the implant. The proximal line limiting the working conical area of the stem in place is situated clearly (4 to 5 cm) above the distal end of the flap.

There is no reserve of the conical anchorage area
In this case, primary stability is ensured by the proximal part of the conical area. The proximal line limiting the working conical area of the stem is situated at the height of or below the distal end of the flap.

• If the distal component is 200 mm long, it will be necessary to replace it with a 140 mm distal component with a larger diameter of + 2 mm, without additional reaming.
• If the distal component is 140 mm long, all that has to be done is to increase the diameter of the implant.

Selecting the distal component
Warning! In practice, the distal component (which ensures primary stability) and the height of the proximal component (which restores the length of the lower limb) are selected simultaneously during the course of the surgery. However, in order to clarify the explanations, these two stages of the surgery will be described separately below.

Assemble the two parts of the test prosthesis corresponding to the references provided by the reamer and impact them gently into place by applying light hammer blows. After impacting them, evaluate and compare the position of the conical area of the implant with the anchoring area (bone-implant contact area). The surgeon may be confronted with the following two situations:

If the endofemoral access route has been selected, it is very difficult, if not impossible, to evaluate and compare the position of the conical area of the implant with the anchoring area in the femur, if the latter is in the isthmus.
When primary stability is achieved in the isthmus of the femur, cutting a flap makes the verification of the position of the conical area of the implant easier. This is also a good reason for not making a flap too short!

Reminder: To restore some reserve of the conical anchorage area, it is necessary to increase the diameter of the implant without increasing the diameter of the medullary canal.

Replacing a 200 mm stem (with no reserve of conical anchorage area) with a shorter, larger-diameter stem is a situation that the surgeon will be confronted with occasionally (these two implants have a similar anchoring area).
Selecting the proximal component

At this stage of the surgery it is necessary to determine the height of the proximal component, avoiding the selection of an extreme proximal component (55 or 105 mm) so as to have some reserve when placing the definitive implant.

Warning! During revision procedures, respecting the usual reference points (summit of the greater trochanter – center of rotation with a ball head, neck size M) in order to calculate the correct length of the lower limb is not an absolute rule. It is always advisable to carry out several trials before making the final choice. The surgeon may be confronted with any of the three following situations:

The correct choice has been made

The length of the lower limb has been restored using one of the average-sized proximal components and the reduction can be carried out without any difficulty.

To calculate the depth of penetration, measure the distance between the shoulder of the test prosthesis and the distal end of the flap (this distance corresponds to the length of the flap – 2 cm, or –1 cm for the proximal component of size 55).

Proximal component 55 (small)

It will be necessary to choose a higher proximal component (65 or 75). In most cases, additional reaming will be carried out in order to increase the depth of penetration of the distal component, which can be achieved without any risks if there is a sufficient reserve of the conical anchorage area.

NB. If it is also necessary to increase the height of the proximal component and simultaneously decrease the length of the lower limb in relation to the usual reference points (difficult reduction due to stiffness of the joint), one may decrease the diameter of the distal component.

If a 140 mm long distal component has been selected, it is possible to decrease its diameter without running into any risks, since this implant has a conical proximal area that can take over the function of the distal conical area in the event of significant subsidence. The same cannot be said of the 200 mm long distal components, as these have a cylindrical intermediate area that is not suited for the wedging effect.
Distal component
• Inserting a proximal trial implant, the height of which has already been determined in the previous operative step.
• Gently hammer in the distal component and at the same time check the depth of penetration with a gage. Wait a moment and check again whether penetration of the implant is complete.
• Trial reposition before selecting the height of the final proximal component and check for antetorsion.

Proximal component size 105 (high)
It will be necessary to decrease the degree of penetration of the distal component to be able to use a lower proximal component.
If the distal component is 140 mm long, it will be necessary to increase its diameter without changing its height. The same applies to the 200 mm long component. In both cases, additional reaming is not always necessary.

If the distal component is 200 mm long, it is frequently preferable to shorten its length while increasing its diameter, if necessary by +4 mm. In this case, additional reaming may be necessary.

Placing the definitive implant into place in two stages
The definitive implant is placed in two stages using a proximal trial part provided for this purpose and can only be carried out if a femoral flap has been cut.

Proximal component
Rinse carefully the Morse taper, position the proximal component by hand with the required antetorsion. Tighten the assembly with the torque wrench and screw in the conical nut. Carry out the reduction and select the neck length of the ball head.

Depending on the quality of the cortical bone, a difference in penetration of ±5 mm compared to the test prosthesis is frequent (penetration of the fins into osteoporotic cortical bone may cause a difference of 10 mm or more).

It is recommended to hold the handle of the stem tensioner very firmly while assembling the proximal component.

Important
When assembling the proximal with the distal implant component, hammering is strictly forbidden. The technique described must be strictly adhered to when assembling implant components.
Incidents

Crack in the diaphyseal femur
A crack may happen at the height of one of the two edges of the distal end of the flap if the latter has not been marked by two drilled holes.

Implant is too high
This may happen if the surgical protocol has not been complied with at the time of selecting the implant.

Movement of the implant at the time of assembly
This incident happens if the stem tensioner is not held firmly when assembling the proximal component.

Putting the flap back into place
If the femur is straight in the frontal plane and slightly curved in the sagittal plane, a good preparation of the endomedullary surface of the flap is sufficient to reduce the gaps. If the femur is curved, it is often necessary to carry out an osteotomy of the medial cortex in order to restore bone-implant contact.

Osteosynthesis of the flap is completed with two cerclages or more if required. If the greater trochanter has become fragile, use the proximal cerclage to carry out an additional mounting in the form of a lateral brace.

If the bone defects or gaps in the flap are not very pronounced, they could be ignored. For larger areas, it is recommended to introduce additional bony material in the form of small, autologous corticocancellous grafts.

Retrieve the implant from its seat, reduce the crack with one or more cerclages of the femur then proceed by impacting the implant back into place, constantly verifying that the crack is reduced.

Disassemble the proximal component and take a lower component, or remove the implant from its seat and carry out additional reaming.

Remove the implant from its seat, correct its orientation and then wedge it back into place.

When putting the flap back into place, the obstacles preventing a good contact at the level of the osteotomy cuts are often located at the height of the greater trochanter (corticalization of the cancellous bone) and at the distal end of the flap (endomedullary ossification).
Surgical Technique
Option 2: Endofemoral Approach

This option is not the most frequently used. However, it should be chosen, if possible, whenever the femur is straight in the frontal plane and not excessively curved in the sagittal plane. In this situation, the objective is to achieve fixation in the metaphyseal-diaphyseal region or in the proximal diaphyseal area.

Articular approach(es)
Posterolateral approach
Place the patient in the lateral decubitus position.
Make a skin incision centered on the greater trochanter and curved slightly backwards at the level of the pelvis.
Make an incision in the fascia lata and the M. gluteus maximum along the muscular fibres.
Identify and retract the posterior edge of the M. gluteus medius before carrying out a posterior capsulotomy, resecting the pyramidal, obturator and gemellus tendons at the level of the bone.
Free the proximal femur in order to ensure a perfect exteriorization of the femur.

Main objectives
Ensure a good exteriorization of the femur. It is not possible to prepare the medullar cavity properly if the femur remains attached deep in the articular cavity.
Open the greater trochanter widely to be sure of being in the axis of the femoral diaphysis and avoiding placing the implant in a varus position.
The cement must always be removed completely. A perfect view of the medullary canal is required for this stage of the surgery, and a femorotomy as a femoral window may be indicated.

At the time of selecting the implant, the objective must be to ensure fixation in the metaphyseal-diaphyseal area of the femur. If this is not possible, try to achieve a short diaphyseal fixation. In any case, use a 120 or 140 mm long distal component.
Reminder: It is never recommended to implant a 200 mm long distal component if the endofemoral approach has been selected.
The definitive stem is placed in a single stage after assembling the two components of the prosthesis outside of the femur.

Immobilize the pelvis posteriorly with a sacral support and anteriorly with a pubic support, making sure that the femoral blood vessels are not compressed. Keep the lower limb in an horizontal position with a pad that can be easily removed.

It may be necessary to cut through the crural square and the aponeurotic extension of the M. gluteus maximus. Before explanting the implant it is often necessary to open the greater trochanter.
Anterolateral approach
Place the patient in the dorsal decubitus position.
Make a skin incision centered on the greater trochanter, slightly angled upwards and forwards at the level of the pelvis.

Transgluteal incision and incision of the M. vastus lateralis in the digastric area. After removing the prosthesis, free the proximal femur by resecting the pyramidal tendon and the posterior capsule at the level of the bone to ensure good exteriorization of the femur.

Femoral approach(es)
Opening the greater trochanter
If the endofemoral approach is selected, a wide lateral and posterior opening in the greater trochanter will be necessary.

This stage of the surgery is completed with the aid of the forceps and hollow chisel as the bone is frequently corticalized and sclerotic on this part of the femur.

Femoral window
If the endofemoral approach has been selected, a femoral window may be indicated in order to remove a cement plug. The window may be either lateral or anterolateral, and if the cortical bone is thick, it will be made in the form of a wedge, which will make it easier to put it back into place without osteosynthesis.

Immobilize the pelvis with a wedge resting against the counter-lateral hip. The hip to be operated must protrude slightly from the operating table.

Avoid making the transgluteal incision too far forward to respect the anatomical continuity between the M. gluteus medius and the M. vastus lateralis. Remember that the point of penetration of the instruments is at the height of the trochanteric fossa.

Complete the opening of the greater trochanter with the aid of a conical reamer when preparing the medullary canal (see “Preparation of the femur and the correct choice of implant,” p. 37).

A femoral window enables good centering of the instruments used to extract a cement plug (see below).
Trochanterotomy

It is suggested to carry out a digastric trochanterotomy preserving the insertions of the M. vastus lateralis.

When a trochanterotomy is indicated, it combines both the articular and femoral approach.

Removal of the cement

This stage of the surgery is often long and laborious, and even the use of a mechanical cement extractor does not prevent from a via falsa if the femur is curved.

In the intermediate area: Remove the cement, breaking it piece by piece, carefully controlling the bone-cement interface.

Beware of residual fragments of cement, as these could mislead to off-axis reaming or to a via falsa.

Cement plug: Drill a hole in the plug with a 6 mm drill bit, then enlarge the opening, up to 10 or 11 mm, to pass a cement extraction curette through it.

Proceed with the removal of the cement plug after complete excision of the intermediate cement. If the femoral stem is off axis, beware of following a via falsa.
Preparation of the femur and the correct choice of implant
Calibrate the femur and adjust the opening of the greater trochanter.
Calibrate the femur with a cylindrical reamer and adjust the opening of the greater trochanter with a conical reamer having a diameter smaller than the medullary canal.

Following this first stage of the surgery, aim to achieve fixation in the metaphyseal-diaphyseal area and, if this fixation mode is not possible, try a short diaphyseal fixation.

Metaphyseal-diaphyseal fixation
The preparation of the femur is realized with a rasp that will also be used as a test prosthesis. It is suggested to perform a preparation of the femur in two stages.
• In a first stage, impact the distal rasp of length 120 mm with the graduated cylindrical handle until a perfect primary stability is achieved. Evaluate its depth of penetration in order to choose the proximal part of the rasp.
• A second step assembles the two rasp components into one piece. In doing so, the depth of penetration must be maintained, which was determined in the first step.
Trial repositioning: See the text below.

If proximal fixation is required, then calibration of the femur using a cylindrical reamer of at least 12 mm diameter is necessary.

A long conical reamer will enable to verify the alignment of the proximal femur in relation to the diaphyseal femur.

If it is difficult to impact the assembled rasp, then it is possible to perform a separate preparation of the metaphysis with a proximal rasp component without using a distal rasp component.

It is possible to ensure a fixation in the metaphyseal-diaphyseal area with a distal component of length 140 mm, which might be indicated when a femoral window was done in order to remove the cement plug.

For this mode of anchorage, proximal spout components are generally used, but it is also possible to implant cylindrical components.
Diaphyseal fixation
If it is not possible to ensure stability in the metaphyseal-diaphyseal area, it is necessary to aim for a diaphyseal fixation.
In this case, the preparation of the diaphyseal femur is carried out with the reamers, and it is necessary to increase the diameter of the reamers to end up, in any case, in sector 1, corresponding to a distal component of a length of 140 mm.
The implant is selected using the rasp, which in any case is only used here as a test prosthesis.

Trial reduction and definitive choice of the proximal component: During revision procedures, respecting the usual reference points (summit of the greater trochanter – center of rotation with a ball head, neck size M) in order to calculate the correct length of the lower limb is not an absolute rule. It is suggested to carry out several trial reductions before making the final choice and to exploit the modular nature of the implant (it might be appropriate to change the height of the proximal component). The trial reductions should be carried out using a femoral head with a neck size M in order to keep some flexibility when putting the definitive implant into place.

Placing the definitive prosthesis
If the endofemoral approach has been selected, the two components of the prosthesis are assembled outside of the femur. If the femoral preparation is carried out correctly, the implant will be wedged into place over a height of 3 to 4 cm after having introduced it manually into the medullary canal.

After assembling the two parts of the prosthesis, introduce the implant oriented in the correct antetorsion with the help of the impactor screwed on the proximal component.
Continue impaction until a cortical sound is obtained. Then wait for a few seconds and verify once again that the implant is set.
Carry out the trial reduction and make the final choice of the ball head neck length.

Reference 140-75 describes a distal component with the diameter of the reamer and a length of 140 mm (number 140) connected to a proximal component of height 75. In this case, the rasp serves purely as a trial prosthesis.
Incidents

Incidents may occur when preparing the femur and usually consist of difficulties in impacting the rasp.

An insufficient lateral or posterior opening of the greater trochanter will lead to a wrong positioning of the rasp, and any attempt to correct that position or to impact it further by force could lead to a fracture of the greater trochanter or, if this does not happen, to a varus position of the implant.

A narrow femur in the sagittal plane in the proximal region can be an obstacle to the penetration of the rasp or cause excessive antetorsion. An additional reaming is often necessary. The same applies if the femur is narrow in the diaphyseal region.

Closure of the joint

Anterolateral approach: Reattach the anterior digastric muscle using 2 transosseous points.

Posterolateral approach: Whenever possible, reattach the pelvic-trochanteric and the posterior capsule.

Digastric trochanterotomy: Perform a lateral and posterior stay maintained by a cerclage on the proximal femur.

The same type of incident may occur if a varus curvature of the femur has not been considered.

In the proximal region, use a cylindrical reamer, diameter 16 to 18 mm, while keeping contact with the lateral cortical bone. In the diaphyseal area, increase the inner diameter of the medullary canal to 12 mm.

It is advisable to carry out an additional mounting in the form of a lateral stay from the base of the greater trochanter with a transosseous point.

If this is a traditional trochanterotomy, create a mounting with 3 metal wires and a lateral stay.
Postoperative Treatment

As far as the instructions to be given to the patient for the period immediately following the surgery are concerned, it is advisable to keep them both simple and pragmatic. It is possible to distinguish between two different situations:

The prosthesis is stable, since it has been wedged perfectly into place in the femur, featuring cortical bone with high mechanical strength and a conically shaped medullary canal. In this situation, loading is authorized straight away, using two forearm crutches that have a dual role: taking the weight off the hip and avoiding incorrect movements, in the expectation of a complete healing of the soft tissues. Immediate physiotherapy is functional only, and it aims to teach the patient what movements should be avoided in order not to have rotational stresses to the prosthesis, in particular when standing up from a seated position or when going up- or downstairs. The patient will undergo a follow-up examination, including an X-ray control, two months after the surgery. At this time a more active physiotherapy may be prescribed. Use of any aid will be abandoned progressively as a function of the recovery of the muscular strength, with the awareness that, generally speaking, there should be no hurry to cease using the crutches.

The prosthesis is not judged to be perfectly stable, since the surgeon has some doubts on the quality of the wedging of the implant. Whatever may be the reasons for this concern, it is recommended to be cautious and not to authorize even partial loading for a period of 6 to 8 weeks. During this period of nonloading, it is preferable to keep the patient under supervision and, if she/he is admitted to a specialized center, order that she/he does not undergo any active physiotherapy throughout this period. At the end of this period, and after a follow-up X-ray, loading may be authorized. In principle this should be gradual; however, it is in practice nearly always complete and immediate.

NB. This cautious attitude is recommended in the early stages of experience with the implant. Moreover, it should be stressed that each patient is a unique case and that the period for which loading should be avoided can very often be shortened to about 4 weeks.
Case Studies (Femoral Flap)

65-year-old male patient, left THP (15 years). Loosening with granulomas+. Corticalized femur (no osteoporosis). Varus deviation of the proximal femur. Lateral flap with pedicle and medial cortical osteotomy, PFM-Revision stem with short diaphyseal fixation and a cementless St. Nabor cup. Flap with gap+ and medial cortical defect. Results after 49 months: very good bone regeneration and perfect osteointegration. (Dr. P. Schuster’s patient)

52-year-old male patient. Right cementless THP in 1990 (10 years) on a dysplastic hip. Significant bone destruction due to granulomas. Valgus deformation of the femur (not very frequent). Lateral flap, short diaphyseal fixation, no bone grafts. Results after three years: excellent bone regeneration (minor lateral cortical defect) and perfect osteointegration.
71-year-old female patient, right THP 1982 (14 years). Only slight loosening but with medial cortical granulomas and varus stem. Straight femur and osteoporosis+. Revision via the endofemoral route: proximal fixation with endomedullary bone graft and cerclage of the proximal femur. No diaphyseal fixation. Results after 5 years and 9 months: moderate atrophy of the proximal femur but no significant modification of the cortical bone, good proximal osteointegration.

66-year-old female patient. Right THP, early aseptic loosening. Bone stock retained, femur straight in the frontal plane and slightly curved in the sagittal plane, cement plug. Endofemoral approach and window for removing the distal cement. Fixation in the metaphyseal-diaphyseal area. Results after 23 months: good osteointegration and no modifications of the cortical bone.
Conclusions

What to do!

• Have suitable X-rays available before the surgery, in order to carry out a radiological analysis enabling the “correct” femoral approach to be selected, considering the imperatives imposed by the press-fit concept.
• Do not hesitate to choose a femoral approach in the form of a pedunculated lateral flap. This is an excellent way to ensure a straightforward revision and an effective press-fit.
• Remove all the cement without damaging the bone lesions further. This requires a perfect view of the endomedullary canal.
• Undertake preparation of the implant area with the rasps or reamers, once there is a certainty of working on a straight segment of the femur and after removing all intramedullary obstacles.

• If an endofemoral approach has been selected, it is necessary to create a large opening in the greater trochanter. Further, diaphyseal fixation will be aimed to only if proximal fixation in the metaphyseal-diaphyseal area is not possible.
 – First of all, it is necessary to prepare the area for receiving the implant using the rasps; if diaphyseal fixation should be necessary, the reamers will have to be used.
 – The selection of the implant, which is done using the rasp that also serves as test prosthesis, is a very important stage of the surgery and entails exploiting the modular nature of the implant properly. The definitive implant will be selected after carrying out one or more trial reductions and it is advisable to keep a safety margin with the modular ball heads by carrying out the trial reductions with a ball head with a neck size M.
 – The definitive stem is implanted in a single stage, after assembling the two components of the prosthesis out of the femur. If the depth of penetration of the definitive prosthesis does not correspond exactly to that of the trial prosthesis, the length of the neck of the ball head can be used to get an offset.

• If a femoral flap has been selected, fixation must necessarily be diaphyseal. In this situation, the reamers are used to give the medullary canal a conical shape and not for the selection of the implant, which will always be done with the test prosthesis.
 – In order to ensure primary stability, it is necessary to use the conical area of the implant and to keep some reserve of the conical anchorage area when wedging the implant into place. With a press-fit stem, it is always suggested to give priority to the diameter of the implant instead of its length.
 – When choosing the implant, it is advisable to avoid choosing an extreme proximal component (sizes 55 or 105); keep a margin when introducing the definitive implant, which is always carried out in two stages.

• When a femoral flap has been carried out, this must be carefully put back into place, in particular if fixation in the diaphyseal region is a borderline case; if the greater trochanter is fragile, it is necessary to carry out cerclage with a lateral stay.

• During the postoperative treatment, give clear instructions to the patient. If complete loading is not possible or risky, it is preferable to keep the patient under supervision during the period of nonloading.
What not to do!

• Do not start the surgery without carrying out a radiological analysis that would highlight the major obstacles to place a straight press-fit stem, in particular the existence of a femoral curvature.
• Do not believe that all the cement can be removed without damaging the bone lesions further, if the cortical tissue is fragile due to stress-shielding or osteoporosis. In such situations there is a risk of incomplete removal of the cement.
• Do not insist on implanting a straight stem in a curved femur using the endofemoral route when a femoral flap is required or, similarly, believe that it would be possible to straighten a femoral curvature while preparing the femur with conical reamers.
• Do not aim to ensure a diaphyseal press-fit with a long stem via the endofemoral approach only: this is always risky, if not impossible. The quality of a press-fit does not depend on the length of the implant but on how well the implant is wedged into place. It is always easier to ensure good wedging with a shorter and thicker implant being near to the anchoring area.
• Do not select an implant on the basis of the references provided by the reamer as this would frequently lead to the choice of an implant longer than necessary.
• Do not forget to keep a safety margin when choosing the height of the proximal component or the neck size of the ball head since forgetting this would lead to the risk of insufficient wedging at the time of implanting the definitive stem into place.
• Do not opt for implanting in two stages after choosing an endofemoral route.
• Do not impact the test prosthesis or the definitive stem by applying strong hammer blows without verifying its progression, or try to impact it in at all costs even when its progression is stopped. Doing this may lead to a fracture or the enclosure of the implant.
• Do not let the patient go home when weight-bearing is not allowed.
Appendix 1
Assembly of the Two Implant Components

The two implant components are assembled (proximal and distal component) to complete the Revitan Straight stem (PFM-Revision) using a torque wrench. Depending on the strategy adopted by the surgeon, the assembly takes place in different ways: 1. in two steps, in situ, after implantation of the distal component and with the help of a proximal trial implant, if a femoral bone flap has been prepared, or 2. in one step outside the femur, if an intrafemoral approach has been chosen.

The principle and use of the torque wrench
The principle of the torque wrench is based on cutting polyethylene shear pins using a cutting device, whereby the diameter of the shear pins has been chosen such that a torque of around 10 Nm is always needed to cut through the pins.

1. Load the torque wrench.
 – Remove the cap (a) of the torque wrench (see illustrations 5, 6 and 7).
 – (b) Each of the 6 PE shear pins is prefitted on a shear pins loader made from polyethylene.

2. Insert the shear pins as far as they will go into the receptacle and turn the loader counterclockwise to release the pins from the plate.

3. Remove the loader.

4. Replace the cap and lock (“Lock” position).

5. After use, release the cap by pressing the release pin.

6. Turn the cap to the “Open” position.

7. Remove the cap and remove the “residual” or unused shear pins from their receptacle.

NB. The torque wrench is also used for tightening or loosening the conical safety nut.

This system guarantees a constant torque and offers the surgeon greater security. The torque wrench no longer needs calibrating.

Each manipulation (tightening) cuts two shear pins. Therefore, using a shear pins loader allows three tightening actions to be carried out (in principle two manipulations are needed when assembling).

NB. A sterile shear pins loader is supplied with each proximal component. It is not possible to resterilize it.
Appendix 1
Assembly of the Stem in One Stage (Extrafemoral)

1. **Position the definitive proximal component**
 Before starting with the assembly of the two implant components, position the proximal component onto the Morse taper of the distal component by hand and set the desired antetorsion of the proximal component. This step must be done before any assembly force is applied to the stem. Once the antetorsion is chosen, push the two parts together by hand to give them stability before continuing with the assembly.

2. **Screw on the stem tensioner**
 Screw the threaded rod of the tensioner onto the threaded part of the Morse taper. To screw on the tensioner, hold it in the hand so that the threaded rod protrudes from the tensioner. Alternatively, the threaded rod can be removed out of the tensioner, screwed onto the threaded part of the Morse taper and eventually the tensioner is reassembled. Tighten by hand the nut of the stem tensioner.

3. **Assemble of the two prosthetic components**
 Hold firmly the stem tensioner and tighten the assembly of the two components with the torque wrench. For this process the request of assistance is strongly recommended. Further, don’t use the stem holder to maintain the implant in order to keep control of the antetorsion.

4. **Screw on the conical nut**
 Finally the conical nut is screwed onto the threaded part of the Morse taper with the help of the setting instrument and tightened with the torque wrench. For the tightening, the implant is placed into the stem holder for an easier control of the rotational stresses.
Appendix 1
Assembly of the Stem in Two Stages (Intrafemoral)

1. Assembly of the proximal trial part and implantation of the definitive distal component
After wedging in the definitive distal component, further trial reductions can be carried out if necessary by changing the sizes of the proximal trial part and changing its antetorsion (up to ±30°).

2. Position the definitive proximal component
Before starting with the assembly of the two implant components, wash the taper, position the proximal component onto the Morse taper of the distal component by hand and set the desired antetorsion of the proximal component. This step must be done before any assembly force is applied to the stem. Once the antetorsion is set, push the two parts together by hand to give them stability before continuing with the assembly.

3. Screw on the stem tensioner
Screw the threaded rod of the tensioner onto the threaded part of the Morse taper.
To screw on the tensioner, hold it in the hand so that the threaded rod protrudes from the tensioner. Alternatively, the threaded rod can be removed out of the tensioner, screwed onto the threaded part of the Morse taper and eventually the tensioner is reassembled. Screw tight by hand the nut of the stem tensioner.

4. Assembly of the definitive proximal component – screw on the conical nut
Hold firmly the stem tensioner and tighten the assembly of the two components with the torque wrench. For this process the request of assistance is strongly recommended.
Finally the conical nut is screwed onto the threaded part of the Morse taper with the help of the setting instrument and tightened with the torque wrench. When tightening the conical nut, neutralize the torsion stresses caused by the torque wrench exerting counterpressure on the neck in the opposite direction to the tightening by hand or with the specially provided handle positioned over the neck of the implant.
Appendix 2
Removal of a Revitan Straight Stem (PFM-Revision)

Thanks to the development of a disassembly system, it is always possible to remove the proximal component without any problems. The removal of the distal implant component is more complicated, in particular in the case of a long stem, well anchored in the bone.

Indications
Either only the proximal component alone or the whole implant is removed.

Removal of the proximal component
The implant is stable. Removal of the proximal component is only necessary for the following reasons:
• Access to the joint and cleaning the joint cavity (sepsis) or manipulation of the acetabular cup (cup revision or introduction of an antidislocation component).
• Change of the proximal component, usually replacement of the component by a higher component because of strong secondary subsidence. More rarely, the antetorsion (recurring dislocation) has to be changed.

Removal of the implant
(proximal and distal component)
• If there is loosening of the implant with abnormal mobility, removal of the stem does not pose a problem. The prosthesis is removed in one piece using a simple extractor.
• If the stem is not loose, the implant should be removed in two steps. Remove the proximal component, then the distal component.

NB. Removal of a firmly seated implant may be necessary in order to clean the medullary cavity (sepsis) or in order to change the implant where there is secondary subsidence that cannot be remedied by exchanging the proximal component.

Bipolar subsidence: surgical revision with PFM-Revision stem and St. Nabor cup. X-ray after 6 months. Significant secondary subsidence of the femoral stem. Extended trochanterotomy and replacement of the proximal components with a higher component with extra-long neck. The firm distal component is left in situ.

Revision surgery in the case of a PFM-Revision stem and a double mobility cup because of iterative bipolar loosening (X-ray after 3 years). Surgical revision of a pseudoarthrosis on the greater trochanter: simple removal of the femoral stem (distal component, 200 mm long) in one piece, which is replaced by a shorter stem with a larger diameter. Exchange of the double-mobility cup with an uncemented St. Nabor cup.
Femoral approach(es)

Intrafemoral approach. If the stem is loose, only an intrafemoral approach is possible, whereby care must be taken to remove obstacles at the height of the greater trochanter.

Extended trochanteric osteotomy.
If there are plans to remove the proximal component alone, it is strongly recommended to access the joint by carrying out an extended osteotomy of the greater trochanter, involving the lateral femoral cortex up to the proximal/distal component transition.

If removal of both prosthetic components is planned (proximal and distal components) when no loosening of the prosthesis is present, the surgeon has two options:

- **Lateral bone flap.** With a short stem (length of the distal component 140 mm), prepare a lateral bone flap of a length of 15 to 20 cm.
- **Extended trochanteric osteotomy or bone flap and diaphyseal release osteotomy along the femoral diaphysis.** In the case of a long stem (distal component 200 mm long): After carrying out an extended trochanteric osteotomy or a bone flap with an oscillating saw, carry out a diaphyseal release osteotomy.

The choice of an intrafemoral approach requires a wide lateral and posterior opening of the greater trochanter.

Carry out a digastric trochanteric osteotomy whereby the insertions of the M. vastus lateralis at the base of the greater trochanter must be preserved.

A femoral bone flap is the safest option. In addition, it should be pointed out that it is always easier to remove a short stem when the implant is not loose.
Appendix 2
Removal of the Proximal Component

Attention
The technique for removal of the proximal component depends on the implant model. In the case of the Revitan Straight implant system (PFM-Revision of the second generation), a thread on the proximal shoulder allows the attachment of an auxiliary instrument for disassembling the proximal component. To remove the proximal component of an implant of a PFM-Revision of the first generation (REF: 21.16.09-XX, 20.16.XX-XXX, 01.0007X.XXX), other instruments are necessary. These are offered as separate instruments.

Disassembly instruments

1. The torque wrench is in the locked position ("Lock").

2. Unscrew the safety nut with the torque wrench.

3. Screw the threaded sleeve (c) with the setting device (01.00409.815) on the threaded pin of the connection taper.

4. The disassembly instrument (a) is screwed to the proximal component via the thread.

5. Screw the threaded rod (b) that presses against the threaded sleeve (c) onto the disassembly instrument (a). The tension force guarantees the disassembly of the proximal component.

6. Unscrew the threaded sleeve with the setting device again.

Important: The threads of the threaded rod and the disassembly instrument should be treated after cleaning with a water-soluble product (for instance instrument milk or an equivalent lubricant) intended for surgical instruments which are going to be sterilized (see Manual on Instrument Care 97-5000-170-00). At any rate, it is imperative that the threads are moistened with Ringer solution before use.

NB. Protect the connection taper with a compress if there is no intention of removing the distal component.
Removal of the distal component

Removal of the distal component takes place after removal of the proximal component. It is done using the extractor (01.00079.011) that is screwed onto the connecting taper of the distal component. Then the sliding hammer is used to drive out the prosthetic element by dry tapping in the direction of the longitudinal axis of the distal component.

If the distal component cannot be removed after a few taps with a hammer, additional measures must be taken such as longitudinal osteotomy, a window, a flap or the introduction of a flat chisel along the stem.
Revitan® Straight – Implants
PFM-Revision of the Second Generation

Proximales Teil, konisch
Proximal part, spout
Partie proximale, tulipée

Protasul® -100
Taper 12/14
Uncemented

<table>
<thead>
<tr>
<th>L mm</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>01.00401.055</td>
</tr>
<tr>
<td>65</td>
<td>01.00401.065</td>
</tr>
<tr>
<td>75</td>
<td>01.00401.075</td>
</tr>
<tr>
<td>85</td>
<td>01.00401.085</td>
</tr>
<tr>
<td>95</td>
<td>01.00401.095</td>
</tr>
<tr>
<td>105</td>
<td>01.00401.105</td>
</tr>
</tbody>
</table>

Proximales Teil, zylindrisch
Proximal part, cylindrical
Partie proximale, cylindrique

Protasul® -100
Taper 12/14
Uncemented

<table>
<thead>
<tr>
<th>L mm</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>01.00402.055</td>
</tr>
<tr>
<td>65</td>
<td>01.00402.065</td>
</tr>
<tr>
<td>75</td>
<td>01.00402.075</td>
</tr>
<tr>
<td>85</td>
<td>01.00402.085</td>
</tr>
<tr>
<td>95</td>
<td>01.00402.095</td>
</tr>
<tr>
<td>105</td>
<td>01.00402.105</td>
</tr>
</tbody>
</table>

Distales Teil, gerade
Distal part, straight
Partie distale, droite

Protasul® -100
Protasul® -21 WF
Uncemented

<table>
<thead>
<tr>
<th>Ø mm</th>
<th>L mm</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>120</td>
<td>01.00405.014</td>
</tr>
<tr>
<td>14</td>
<td>140</td>
<td>01.00405.114</td>
</tr>
<tr>
<td>16</td>
<td>140</td>
<td>01.00405.116</td>
</tr>
<tr>
<td>18</td>
<td>140</td>
<td>01.00405.118</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>01.00405.120</td>
</tr>
<tr>
<td>22</td>
<td>140</td>
<td>01.00405.122</td>
</tr>
<tr>
<td>24</td>
<td>140</td>
<td>01.00405.124*</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>01.00405.214</td>
</tr>
<tr>
<td>16</td>
<td>200</td>
<td>01.00405.216</td>
</tr>
<tr>
<td>18</td>
<td>200</td>
<td>01.00405.218</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>01.00405.220</td>
</tr>
<tr>
<td>22</td>
<td>200</td>
<td>01.00405.222</td>
</tr>
<tr>
<td>24</td>
<td>200</td>
<td>01.00405.224</td>
</tr>
<tr>
<td>26</td>
<td>200</td>
<td>01.00405.226*</td>
</tr>
<tr>
<td>28</td>
<td>200</td>
<td>01.00405.228*</td>
</tr>
</tbody>
</table>

* Auf Anfrage
* On request
* Sur demande

1 Mit Abscherstiften und Ladehilfe verpackt
1 Packed with shear pins loader
1 Emballée avec chargeur de broches sècables

* Auf Anfrage
* On request
* Sur demande
Revitan® Straight – Basic Instruments
PFM-Revision of the Second Generation

Sieb Basisinstrumente (komplett)
Tray for base instruments (complete)
Plateau pour instruments de base (complet)

Ref: ZS 01.00408.100

Sieb Basisinstrumente (leer)
Tray for base instruments (empty)
Plateau pour instruments de base (vide)

Ref: 01.00408.101

Einsatz zu Sieb Basisinstrumente (leer)
Insert for tray for base instruments (empty)
Insert pour plateau pour instruments de base (vide)

Ref: 01.00408.102

Standard-Siebedeckel, grau
Standard tray cover, grey
Couvercle standard pour plateau, gris

Ref: 01.00029.031

Handmarkraumbohrer
Hand reamer
Àlesoir à main

Ref: 79.10.46

Griff für modulare Raspen
Handle for modular rasps
Poignée pour râpes modulaires

Ref: 70.00.94

Handgriff mit Schnellkupplung
Handle with quick coupling
Poignée à verrouillage rapide

Ref: 70.00.25

Steckschlüssel 3,5 mm
Hexagonal wrench 3.5 mm
Clé à embout hexagonal 3,5 mm

Ref: 79.15.84

Mutter zu Manipulierteil
Nut for proximal trial part
Ecrou pour pièce d’essai

Ref: 01.00079.001

Schlüssel zu Mutter
Wrench for nut
Clé pour écrou

Ref: 01.00079.002
Revitan® Straight – Basic Instruments

PFM-Revision of the Second Generation

- **Griff zu Schaftspanner** Handle for stem tensioner Poignée pour tendeur
 - **REF** 01.00409.804

- **Gegenhalter** Handle for counterforce Manche de retenue
 - **REF** 01.00409.809

- **Gewindestange zu Schaftspanner** Threaded rod for stem tensioner Tige filetée pour tendeur
 - **REF** 01.00409.816

- **Mutter zu Schaftspanner** Nut for stem tensioner Ecrou pour tendeur
 - **REF** 01.00409.806

- **Einschläger** Impactor Impacteur
 - **REF** 01.00409.800

- **Drehmomentschlüssel** Torque wrench Clé dynamométrique à barillet
 - **REF** 01.00409.808

- **Haltegriff für Schaft** Stem holder Manche de maintien pour tige
 - **REF** 01.00409.807

- **Massstab, 30 cm** Ruler, 30 cm Règlette, 30 cm
 - **REF** 75.11.30

- **Manipulierkugelkopf** Trial ball head Tête d’essai

<table>
<thead>
<tr>
<th>Größe/Size/Taille</th>
<th>Ø mm</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>28</td>
<td>01.0159.128</td>
</tr>
<tr>
<td>M</td>
<td>28</td>
<td>01.0159.228</td>
</tr>
<tr>
<td>L</td>
<td>28</td>
<td>01.0159.328</td>
</tr>
<tr>
<td>XL</td>
<td>28</td>
<td>01.0159.428</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Größe/Size/Taille</th>
<th>Ø mm</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>32</td>
<td>01.0159.132</td>
</tr>
<tr>
<td>M</td>
<td>32</td>
<td>01.0159.232</td>
</tr>
<tr>
<td>L</td>
<td>32</td>
<td>01.0159.332</td>
</tr>
<tr>
<td>XL</td>
<td>32</td>
<td>01.0159.432</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Größe/Size/Taille</th>
<th>Ø mm</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>36</td>
<td>01.0159.136*</td>
</tr>
<tr>
<td>M</td>
<td>36</td>
<td>01.0159.236*</td>
</tr>
<tr>
<td>L</td>
<td>36</td>
<td>01.0159.336*</td>
</tr>
<tr>
<td>XL</td>
<td>36</td>
<td>01.0159.436*</td>
</tr>
</tbody>
</table>

* Auf Anfrage
* On request
* Sur demande

- **Führungshülse für Hohlfräser proximal** Guiding sleeve for hollow reamer proximal Manchon de guidage pour fraise creuse proximale
 - **REF** 01.00409.803

- **Demontageinstrument** Disassembly instrument Instrument de démontage
 - **REF** 01.00409.802

- **Setzinstrument für Konusmutter** Setting instrument for conical nut Instrument de pose pour écrou conique
 - **REF** 01.00409.801

- **Setzinstrument Demontagehülse** Setting device for disassembly sleeve Porte douille de démontage
 - **REF** 01.00409.815

- **Extrakutionsinstrument für distales Teil** Extraction instrument for distal part Pièce de démontage pour partie distale
 - **REF** 01.00079.011
Revitan® Straight – Basic Instruments
PFM-Revision of the Second Generation

Auf Anfrage
On request
Sur demande

Abscherstifte mit Ladehilfe, steril
Shear pins loader, sterile
Chargeur de broches sécables, stéril
REF 01.00409.810

IMT-Raspeladapter
IMT rasp adapter
Barre pour râpe avec IMT
REF 01.00409.813

Einschlaginstrument distal
Impactor distal
Impacteur distal
REF 01.00409.811

IMT-Raspeladapter proximal
IMT rasp adapter proximal
Connexion pour râpe avec IMT
REF 01.00409.083

Hohlfräser proximal
Hollow reamer proximal
Fraise creuse proximale
REF 01.00409.812
Revitan® Straight – Instruments Proximal
PFM-Revision of the Second Generation

Sieb für Instrumente proximal konisch (komplett)
Tray for instruments proximal spout (complete)
Plateau pour instruments proximaux tulipés (complet)

Raspel proximal konisch
Rasp proximal spout
Râpe proximale tulipée
Grösse/Size/Taille REF
55 01.00409.155
65 01.00409.165
75 01.00409.175
85 01.00409.185
95 01.00409.195
105 01.00409.195

Manipulierteil proximal konisch
Trial part proximal spout
Pièce d’essai proximale tulipée
Grösse/Size/Taille REF
55 01.00409.156
65 01.00409.166
75 01.00409.176
85 01.00409.186
95 01.00409.196
105 01.00409.106

Sieb für Instrumente proximal zylindrisch (komplett)
Tray for instruments proximal cylindrical (complete)
Plateau pour instruments proximaux cylindriques (complet)

Raspel proximal zylindrisch
Rasp proximal cylindrical
Râpe proximale cylindrique
Grösse/Size/Taille REF
55 01.00409.255
65 01.00409.265
75 01.00409.275
85 01.00409.285
95 01.00409.295
105 01.00409.205

Manipulierteil proximal zylindrisch
Trial part proximal cylindrical
Pièce d’essai proximale cylindrique
Grösse/Size/Taille REF
55 01.00409.256
65 01.00409.266
75 01.00409.276
85 01.00409.286
95 01.00409.296
105 01.00409.206

Kleiner Siebdeckel, grau
Small tray cover, grey
Petit couvercle pour plateau, gris
REF 01.00408.301

Kleiner Siebdeckel, grau
Small tray cover, grey
Petit couvercle pour plateau, gris
REF 01.00408.301
Revitan® Straight – Instruments Distal Straight
PFM-Revision of the Second Generation

Sieb distal gerade (komplett)
Tray distal straight (complete)
Plateau distal droit (complete)
REF
ZS 01.00408.500

Sieb distal gerade (leer)
Tray distal straight (empty)
Plateau distal droit (vide)
REF
01.00408.501

Standard-Siebdeckel, grau
Standard tray cover, grey
Couvercle standard pour plateau, gris
REF
01.00029.031

Handreibahle distal gerade
Conical reamer distal straight
Aîloir conique droit
REF
01.00409.014
16 01.00409.016
18 01.00409.018
20 01.00409.020
22 01.00409.022
24 01.00409.024
26 01.00409.026*
28 01.00409.028*

Raspeladapter mit Längenmarkierung
Rasp adapter with length markings
Barre graduée pour râpe
REF
01.00409.501

Revisionsführungsteil
Guide distal straight
Guide distal droit
REF
01.00409.512
14 140 01.00409.513
16 140 01.00409.514
20 140 01.00409.515
22 140 01.00409.516
24 140 01.00409.517*

14 200 01.00409.522
16 200 01.00409.523
18 200 01.00409.524
20 200 01.00409.525
22 200 01.00409.526
24 200 01.00409.527
26 200 01.00409.528*
28 200 01.00409.529*

16 260 01.00409.533
18 260 01.00409.534
20 260 01.00409.535
22 260 01.00409.536
24 260 01.00409.537
26 260 01.00409.538*
28 260 01.00409.539*

* Auf Anfrage
* On request
* Sur demande
Disclaimer

This document is intended exclusively for physicians and is not intended for laypersons.

Information on the products and procedures contained in this document is of a general nature and does not represent and does not constitute medical advice or recommendations. Because this information does not purport to constitute any diagnostic or therapeutic statement with regard to any individual medical case, each patient must be examined and advised individually, and this document does not replace the need for such examination and/or advice in whole or in part.

Information contained in this document was gathered and compiled by medical experts and qualified Zimmer personnel. The information contained herein is accurate to the best knowledge of Zimmer and of those experts and personnel involved in its compilation. However, Zimmer does not assume any liability for the accuracy, completeness or quality of the information in this document, and Zimmer is not liable for any losses, tangible or intangible, that may be caused by the use of this information.

Contact your Zimmer representative or visit us at www.zimmer.com